

Prof. Damien C. Weber :: Centre for Proton Therapy :: Paul Scherrer Institute :: UniBE

Proton therapy plus management of cancer patients: can we make the math's work for

November 16th 2022, Inselspital, Bern

AYAs?

Goals of this talk

- Definition of AYAs/TYAs (Many!)
- Recognize that there are an increasing number of survivors of AYA cancers
- Recognize that survivors of AYA cancers have unique health issues long after cancer care
- Review the results of AYAs treated with proton at PSI (H&N, sarcoma, UM and skull base tumors
- Conclusions

Whats an AYA?

Adolescent and Young adult

b UNIVERSITÄT BERN

- Typically patients aged 13-39 years, with exact age ranges varying by countries/publications or programs
- NCCN defines as <u>15-39 years of age</u>
- ✤U. Iowa (UIHC) AYAs defined as 13-31 years
- ✤15-29 (Netherlands)
- ♦ NHS 15-25 years

Holland-Frei Cancer Medicine. 6th editi

Cancer Medicine: Definition of Older adolescent and Young Adult: 15 to 29 years of age (<u>https://www.ncbi.nlm.nih.gov/books/NBK13167/</u>)

Adolescence (10-19 years) and young (or emerging) adults (20-24 years)

https://www.thelancet.com/journals/lanchi/article/PIIS2352-4642(18)30079-8/fulltext

UNIVERSITÄT BERN

Unique group of patients

- -Start of adult life
- -Beginning of career development
- -Psychosocial and financial implications
- Unique ethical ecosystem surrounding autonomy and medical decision making
- -Under-studied population with specific needs
- Modest/no improvement of survival in high-income countries (EUROCARE-5)

Differences in AYA cancers

- Main Cancer types in this group:
 - Leukemia
 - Lymphoma
 - Bone and tissue tumors
 - CNS
 - Germ Cell
 - Thyroid cancers

Hudson Presentation. Need of Adolescent and Young Adults with Cancer. Report from IOM. 2013

^b UNIVERSITÄT BERN

Side effects of Cancer Therapies

- Therapy is almost always multi-modal
 - Chemotherapy
 - o Radiation
 - Surgery

Each of these has its own set of sequelae

- When more than one is used, the risks are often greater than additive
- Each therapy will have different doses and different systems affected, so there is no one-size-fits-all approach

Late effects of Surgery

Surgical Site	Effect
Abdominal	Adhesions
Retroperitoneal	Adrenal insufficiency Solitary kidney Hypertension
Musculoskeletal	Amputation effects (phantom pain, mobility issues, infection) Skin strictures Weakness
Thoracic	Lung scarring
CNS	Learning disabilities Ataxia Speech

^b UNIVERSITÄT BERN

Late effects pf Chemotherapy

Class	Agents	Effects
Alkylators	Busulfan, Carboplatin, carmustine, Cisplatin, Cyclophosphamide, Ifosfamide, Lomustine, Melphalan, Thiotepa, temozolomide	Secondary MDS/AML Gonadal dysfunction/infertility Pulmonary Fibrosis Urinary tract abnormalities Renal dysfunction Ototoxicity Dyslipidemia
Anthracyclines	Daunorubicin, Doxorubicin, Epirubicin, Idarubicin	LV dysfunction Cardiomyopathy
Corticosteroids	Dexamethasone, Prednisone	Reduced bone density Osteonecrosis Cataracts

 $u^{\scriptscriptstyle b}$

^b UNIVERSITÄT BERN

b UNIVERSITÄT BERN

Late effects pf Chemotherapy

Class	Agents	Effects
Vinca Alkaloids	Vincristine, Vinblastine	Peripheral sensory and motor neuropathy
Anti-metabolites	Methotrexate	Neurocognitive impairment Leukoencephalopathy Liver dysfunction Renal toxicity Decreased bone density
Epipodophyllotoxins	Etoposide	AML

b UNIVERSITÄT BERN

Late effects of radiation therapy

System Exposed to RT	Effects
CVS	Cardiomyopathy Carotid artery disease Conduction disorders Pericardial fibrosis/pericarditis
CNS	Neurocognitive deficits Cerebrovascular disease (stroke, moyamoya) Clinical leukoencephalopathy Neurosensory deficits
Endocrine	Pituitary dysfunction/altered puberty Thyroid dysfunction Diabetes
GI	Esophageal strictures Chronic enterocolitis Bowel Obstruction

UNIVERSITÄT BERN

Late effects of radiation therapy (Ctnd)

System Exposed to RT	Effects
Female Reproductive System	Uterine vascular insufficiency→ SAB, LBW infants, prematurity Ovarian dysfunction
Male Reproductive System	Leydig cell dysfunction→ delayed/arrested puberty Sertoli dysfunction→ oligospermia/infertility
Pulmonary	Pulmonary fibrosis Interstitial pneumonitis Restrictive/obstructive lung disease
Urinary Tract	Bladder fibrosis Vesicoureteral reflux Hydronephrosis Hypertension
Any System	Secondary neoplasms (basal cell carcinoma, breast, thyroid, brain cancer)

Page 11

0

BERN

Risk of developping CHF after TX with Anthracyclines, Radiation or Both

Time Since Diagnosis (years)

25

30

20

15

35

40

NCI Publications-Late Effects of Treatment for Childhood Cancers (PDQ). https://www.cancer.gov/types/childhood-cancers/late-effects-hp-pdg#section/ 1360

AYAs & survivorship

5-Year Survival Rate, Age 0-19

Source: Surveillance, Epidemiology, and End Results (SEER) Program (seer.cancer.gov)

SEER 9 area. Based on follow-up of patients into 2012

UNIVERSITÄT BERN

Robison, et al. Survivors of childhood and adolescent cancer: life-long risks and responsibilities. Nature Reviews-Cancer. 14, 61-70 (2014).

PAUL SCHERRER INSTITUT

• AYAs & survivorship (Estimated Numbers of Cancer Survivors)

Estimated and projected number cancer survivors in the United States from 1977-2022 by years since diagnosis

de Moor JS, Mariotto AB, Parry C, Alfano CM, Padgett L, Kent EE, Forsythe L, Scoppa S, Hachey M, and Rowland JH. Cancer Survivors in the United States: Prevalence across the Survivorship Trajectory and Implications for Care. Cancer Epidemiol Biomarkers Prev. 2013 Apr;22(4):561-70. doi: 10.1158/1055-9965.EPI-12-1356. Epub 2013 Mar 27.

(2015)

CEBP 24(4):653-63

al.

et

Phillips

Estimates of Prevalence of Compromised Health in Survivors AYA Cancers

 u^{\flat}

Modeled IQ scores after EBRT Cranial Radiation (by age at which RT was delivered)

Merchant T. et al. JCO 27;3691-97 (2009)

Pencil beam scanning Proton Therapy

UNIVERSITÄT BERN

SB Ch/Chsa in AYAs: PSI experience : Methods

- Aims of study:
 - Clinical Outcome and Late Toxicity
 - Prognostic Factors
 - Employment status
- October 1998 to July 2017
- Median Age 30 years (Range, 15-39)
- 108 Skull Base Chordomas (n=58) / Chondrosarcomas (n=50)
- All AYAs treated with PBS-PT
- Dose:
 - High risk areas: 74Gy (RBE) Ch; 70Gy (RBE) ChSa
 - Low risk areas: 54Gy

PAUL SCHERRER INSTITUT

SB Ch/Chsa in AYAs: Characteristics

Characteristics	N	108
Gender	Female	61 (56.5%)
	Male	47 (43.5%)
Age at PT	<24	25 (23.1%)
	>=24	83 (76.9%)
Timing of PT	Primary diagnosis	86 (79.6%)
	Recurrence / Progressive disease	22 (20.4%)
Resection Status	GTR / Microscopic disease	7 (6.5%)
	Macroscopic Subtotal resection	101 (93.5%)
Optic apparatus compession	None	66 (62.3%)
at Diagnosis <i>(n=106)</i>	Abutment	18 (17%)
	Compression	22 (20.8%)
Optic apparatus compression	None	76 (70.4%)
at PT	Abutment	21 (19.4%)
	Compression	11 (10.2%)
Brainstem compression at	None	40 (37.7%)
Diagnosis <i>(n=106)</i>	Abutment	18 (17%)
	Compression	48 (45.3%)
Brainstem compression at PT	None	75 (69.4%)
	Abutment	19 (17.6%)
	Compression	14 (13%)

 $u^{\scriptscriptstyle b}$

SB Ch/Chsa in AYAs: Survival Outcomes

Median follow up 86 months (range, 12-236)

SB Ch/Chsa in AYAs: Prognostic factors

BERN

b

SB Ch/Chsa in AYAs: Prognostic factors

 $u^{\scriptscriptstyle \flat}$

SB Ch/Chsa in AYAs: Late Toxicity

- 7-yr \geq G3 Late Toxicity Free Survival 85.3%
 - \circ N=16 patients (15%) ≥ G3 Late Toxicity
 - n=1 G5
 - ➤ 35 year old treated for clival chordoma.
 - Stroke at 88 months post PT. Fatal brainstem haemorrhage 99 months post PT. Evolving changes brainstem unclear if stroke / radionecrosis).
 - No recurrence
 - n=15 G3

> 10 ototoxicity, 2 CSF leaks, 1 Optic Neuropathy, 1 Epiphoria, 1 Fatigue

 \circ No significant factors influencing high grade toxicity on univariate analysis

- Number of surgeries, optic apparatus or brainstem compression
- Neuro moderate G2 tox (n=9; 9%):
 - 1 Neurocognition deficit, 4 Memory impairment, 4 CNS Necrosis, 2 Seizures
- No secondary malignancy

UNIVERSITÄT BERN

SB Ch/Chsa in AYAs: Employment Hx

	Employment at	Employment at time of
	time of PT	last follow up
Available data	60	42
	00	(32 with initial data)
Unemployed	<u>5 (8%)</u>	13 (31%)
Employed, at work	30 (50%)	25 (60%)
Employed, 100% sick leave	8 (13%)	0 (0%)
In education	17 (28%)	4 (9.5%)

 ≥ G3 late tox was significantly higher in unemployed group (33%) vs employed / in education (7%); p=0.05

SARCOMA (non RMS) and AYAs

Table 1 Patient characteristics a	nd tumor entities (n=67)	n (%)
Age at diagnosis (range) [years]	Median (range)	22 (11 – 39)
Age at PT (range) [years]	Median (range)	24 (15 – 39)
Sex	female	36 (53.7)
	male	31 (46.3)
NM Status at diagnosis	N+ at diagnosis	4 (6.0)
	M+ at diagnosis	7 (10.4)
Tumor site	CNS/skullbase	7 (10.4)
	Head and Neck	16 (23.9)
	Thorax/Abdomen	6 (9.0)
	Spine/paraspinal	17 (25.4)
	sacral/pelvic bones	11 (16.4)
	extremities	5 (7.5)
	several sites	5 (7.5)
Malignant bone tumors	Ewing Sarcoma	15 (22.4)
	Osteosarcoma	9 (13.4)
Soft tissue sarcoma	alveolar Rhabdomyosarcoma	7 (10.4)
	embryonal Rhabdomyosarcoma	6 (9.0)
	Hemangiopericytoma	4 (6.0)
	Synovial sarcoma	3 (4.5)
	Leiomyosarcoma	2 (3.0)
	other STS	12 (17.9)
Bening tumors	Desmoid tumor	4 (6.0)
	other benign	5 (7.5)
Total		67 (100.0)

 $u^{\scriptscriptstyle b}$

SARCOMA and AYAs

SARCOMA and AYAs

Туре	Time to toxicity	Tumor entity	Tumor site	PT dose
	(months)			(Gy RBE)
Cataract (n=3)	20	Embryonal RMS	CNS	46.8
	39	Ewing sarcoma	Epipharynx/nasopharynx	59.4
	41	Osteosarcoma	Epipharynx/nasopharynx	70.0
Mastoiditis	52	STS	Skullbase	76.0
(n=1)				
Osteonecrosis	63	Embryonal RMS	Mandibula	74.0
(n=1)				
Paraplegia	12	Hemangioperizytoma	Spinal	64.0
(n=1)				

Proton therapy for uveal melanoma in adolescents/young adults (AYAs) and adults: a matched cohort analysis

Variables used in matching

```
cvar <- c(
    "Country",
    "Sex",
    "Familial_melanoma",
    "year_treated",
    "Reduced_safety_margin",
    "LTD",
    "MTD",
    "Thickness",
    "Exteriorisation",
    "Ant_margin",
    "iris_origin",
    "other_known_tumors",
    "T_cat"
}</pre>
```


PAUL	S C H E I	RER	NS	TITUT
	Ţ			

	Stratified by AY	A	
	0	1	SMD
n	270	270	
Country (%)			0.009
СН	59 (21.9)	58 (21.5)	
border	138 (51.1)	139 (51.5)	
other	73 (27.0)	73 (27.0)	
sex = Male (%)	104 (38.5)	111 (41.1)	0.053
Familial_melanoma = TRUE (%)	8 (3.0)	6 (2.2)	0.047
year_treated (mean (SD))	2001.59 (3.17)	2001.47 (3.21)	0.035
Reduced_safety_margin = FALSE	(%) 270 (100.0)	270 (100.0)	<0.001
LTD (mean (SD))	16.38 (4.35)	16.18 (4.18)	0.047
MTD (mean (SD))	13.94 (3.88)	13.88 (3.72)	0.016
Thickness (mean (SD))	6.20 (2.89)	6.07 (2.76)	0.047
Exteriorisation = TRUE (%)	13 (4.8)	9 (3.3)	0.075
Ant_margin (%)			0.048
anterior choroid	61 (22.6)	58 (21.5)	
ciliary body	67 (24.8)	66 (24.4)	
iris	33 (12.2)	31 (11.5)	
posterior choroid	109 (40.4)	115 (42.6)	
iris_origin (%)			0.051
no	241 (89.3)	245 (90.7)	
unlikely	18 (6.7)	16 (5.9)	
yes	11 (4.1)	9 (3.3)	
Other_known_tumors = TRUE (%)	8 (3.0)	10 (3.7)	0.041
T_cat (%)			0.059
1	19 (7.0)	21 (7.8)	
2	78 (28.9)	82 (30.4)	
3	78 (28.9)	79 (29.3)	
4	95 (35.2)	88 (32.6)	

Survival (Kaplan-Meyer)

Provisional conclusions

- No significant differences in OS ans local recurrences between AYAs and ADULTS
- No significant difference between DMFS

Demographic data

Demographic data			
Sex male	53.5% (38)		
Age	8.9 (0.3-37.9)		
≥ 18 yo	19.7% (14)		
Anesthesia	40.8% (29)		
QoL	43.1% (31)		

- Ewing's Sarcoma
- Osteosarcoma
- Chondrosarcoma
- Fibrosarcoma

Tumor characteristics

Rhabdomyosarcoma (n= 51)				
Ma	le sex	52.9%	27	
Age	2	8.2	(0.3-35.9)	
Adι	ılt	13.7%	7	
Sub	Subtype			
•	Emrbyonal	62.7%	32	
•	Alveolar	31.4%	16	
•	Spindle cell	5.9%	3	
Stage				
•	IIA	7.8%	4	
•	ш	82.4%	42	
•	IV	9.8%	5	

FOXO3-PAX1 status avaliable in 60% of RMS

 $u^{\scriptscriptstyle b}$

	Ь
11.	
\sim	

Soft tissue sarcomas (n= 54)			
Orbit	31.2%	17	
Nasal cavity/Nasopharynx	27.8%	15	
Infratemporal fossa	11.1%	5	
Oral cavity/Oropharynx	9.3%	5	
Pterygoid fossa	5.6%	3	
Retroauricular/Middle ear	5.6%	3	
Paranasal Sinus	3.7%	2	
Parapharyngeal space	3.7%	2	
Submandibular	1.9%	1	

Bone sarcomas (n= 17)		
Ethmoid	35.3%	6
Maxilar	23.5%	4
Mandible	11.8%	2
Frontal	5.9%	1
Cygomatic	5.9%	1
Nasal	5.9%	1
Middle ear	5.9%	1
Orbit	5.9%	1

Treatment characteristics: Protocol

82% were treated inside or according to a protocol

Treatment characteristics: Surgery

Most of the patients did not undergo surgery

Surgery			
Surgery	Surgery	43.7%	31
	Biopsy	56.3%	40
Number of surgeries	0	56.3%	40
	1	35.2%	25
	2	7%	5
	3	1.4%	1
Margin last surgery	Biopsy	56.3%	40
	RO	9.9%	7
	R1	14.1%	10
	R2	29.7%	14

Treatment characteristics: Chemotherapy

93% received chemotherppy as part of the treatment

$u^{\scriptscriptstyle b}$	

Chemotherapy			
ChT at	Yes	93%	66
any time of Tx	No	7%	5
Timing	ChT-prePRT	90.1%	64
	ChT- concomitant	76.1%	54
	ChT-postPRT	60.6%	43

Treatment characteristics: Proton therapy

	Gy (RBE)
Total dose	54 (36 – 73.8)
Dose per Fr	1.8 (1.8 - 2.2)
Boost dose	9 (3.6 – 19.8)
	Size (cc)
GTV	Size (cc) 32.9 ± 37
GTV CTV_Low	Size (cc) 32.9 ± 37 139.5 ± 122

- All patients were treated with SFO
- PRT to a metastasis in the H&N area of 1 patient (1.4%)
- Lymph node irradiation in 21.1 %
- Vertebrae irradiation in 8.5%

All patients presented acute toxicity

Acute toxicity			
Only Grade 1	26.8%	19	
Grade 2	54.9%	39	
Grade 3	18.3%	13	

46)

63.9% of all patients presented late toxicity (n=

Late toxicity		
No toxicity	35.2%	25
Only Grade 1	40.8%	29
Grade 2	18.3%	13
Grade 3	5.6%	4

UNIVERSITÄT BERN

Follow-up and events

Median follow-up: 37 months (3.5 – 220)

- 12 Deaths (16.9%) of which 11 were due to disease
- 13 Local failures (18.3%)
 - 12 in-field local failures
 - 1 marginal
- 12 Distant failures 16.9%

Distant Failures		
HNSa-11	Peritoneal, Liver	
HNSa-12	Leptomeningeal	
HNSa-16	Leptomeningeal	
HNSa-17	Soft tissue	
HNSa-22	Lymph nodes	
HNSa-31	Brain	
HNSa-37	Brain	
HNSa-40	Paquimeningeal	
HNSa-43	Lungs	
HNSa-50	Soft tissue	
HNSa-65	Lungs	
HNSa-74	Brain	

Provisional data (6 patients pending for an update of the follow-up)

 $u^{\scriptscriptstyle b}$

Overall survival

Local Failure Free Survival

Distant progression free survival

UNIVERSITÄT

Take home messages

- Definition of AYAs varies
- PSI treats a fair amount of AYAs with proton therapy
- PT offers good toxicity profile with high RT doses
- Clinical outcome of AYA patients identical to adults (skull base tumors)
- Decompression of Optical structures and Brainstem at RT -> Value of surgery
- Outcome of adults and AYAs with Ums seems to be identical
- OS@3yo of sarcoma (non-RMS and RMS) 69-85%

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

UNIVERSITÄT

Thank you for your attention

Many thanks to:

- Dr Sebastien Tran Dr Stephanie Kroeze
- Dr Alessia Pica
- Dr Marc Walser
- Dr Barbara Bachtiary
- Dr Jan Hrbacek
- Dr Miriam Vaszquez
- Dr Christina Schröder

