Brust

Perspektiven der gezielten Radionuklid-Bildgebung und -Therapie des Fibroblasten-Aktivierungsproteins (FAP) bei Krebs

Gruppe Gourni   Tumore entwickeln sich in einer komplexen Mikroumgebung aus verschiedenen Zelltypen, umgeben von einer proteinreichen Matrix namens Tumorstroma. Krebszellen sind auf diese Unterstützung angewiesen, um zu überleben, zu wachsen und anderes Gewebe zu befallen. Das Stroma, bestehend aus Immunzellen, Fibroblasten und Endothelzellen, ist daher ein potenzielles Ziel für Krebstherapien. Die Bekämpfung von FAP, einem überexprimierten Protein bei verschiedenen Tumortypen, könnte eine nützliche Strategie zur Verhinderung von Tumorwachstum sein. 
Das aktuelle Projekt zielt darauf ab, neuartige FAP-spezifische Inhibitoren zu entwerfen und zu evaluieren, um Radiotracer zu generieren, die für die Diagnose und Behandlung von FAP-positiven Tumoren eingesetzt werden können. Die neuartigen Radiotracer werden gründlich in vitro und in vivo an Zelllinien und xenograftierten Tumormodellen untersucht, um ihre Bindungseigenschaften und ihre in vivo Leistung zu verstehen.

Zielgerichtete Untersuchungen des Zellstoffwechsels zur Verbesserung der Krebstherapie

Gruppe Marti   In diesem Projekt wird untersucht, wie der Nukleotid-/Laktat-Stoffwechsel und die DNA-Schadens-Reparatur-Maschinerie mit der Fähigkeit zur Tumorbildung, dem Ansprechen auf Chemotherapie und zur Metastasierung von Lungen- und Mesotheliom-Krebsstammzellen zusammenhängen. Darüber hinaus nutzen wir therapieinduzierte, zelluläre Anpassungen als neue Angriffspunkte für die Krebstherapie.

Die Rolle des Minor-Spleissosoms bei Krebs

Gruppe Rubin   Gene bestehen aus kodierenden Einheiten (Exons), die durch nicht kodierende Regionen, den Introns, voneinander getrennt sind. Bei der Herstellung von Proteinen werden Exons zusammengespleisst und Introns aus dem mRNA-Molekül entfernt. Für diesen Spleissvorgang hat die Evolution einen zellulären Apparat, das so genannte Speissosom, hervorgebracht. Alternatives Spleissen ermöglicht die Erzeugung verschiedener Proteinisoformen aus einem einzigen Gen. Unter normalen physiologischen Bedingungen ist der Spleissprozess streng reguliert. Unsere neusten Resultate zeigen, dass Krebszellen ein spezialisiertes Spleissosom, das so genannte Minor-Spleissosom, nutzen, um krebsrelevante mRNAs zu vermehren. Krebs macht sich also die Minor-Intron-Spleissmaschinerie zunutze, um die Expression von Minor-Intron-enthaltenden Transkripten zu steigern. Von Minor-Intron-Genen kodierte Proteine scheinen speziell für das Überleben der Zelle (z.B. Regulierung des Zellzyklus oder DNA-Reparatur) wichtige Gene zu aktivieren. Die Ausnutzung dieser Abhängigkeit der Krebszellen von Minor-Intron-enthaltenden Genen stellt eine neue therapeutische Möglichkeit der gezielten Krebsbekämpfung dar. Durch Hemmung des Minor-Spleissosoms können wir selektiv den Zelltod in Krebszellen auslösen, während gesunde Nachbarzellen verschont bleiben.

Krebszellenmigration basierend auf onkogen-induzierter Autophagie

Gruppe Tschan   Wir haben eine onkogene Spleissvariante des Tumorsuppressor und Transkriptionsfaktors DMTF1 entdeckt. DMTF1 ist ein positiver Regulator des p53 Signalweges. Diese onkogene Spleissvariante, DMTF1β, erhӧht die Migration von Krebszellen mittels Aktivierung der Autophagie. Aktuell untersuchen wir die Mechanismen, welche für die Regulation dieses neuen Onkogens verantwortlich sind und wie DMTF1β die maligne Zellmigration mittels Autophagie steuert. Unser Ziel ist es herauszufinden welche Tumorarten unter welchen Umweltbedingungen von einer Kombinationstherapie mit gӓngigen Krebstherapien und der Blockierung der Autophagie, mit dem die Zellmigration einzudӓmmen, profitieren kӧnnen.